한림대의료원, AI 활용 낙상·욕창 실시간 예측 모델 개발
한림대의료원, AI 활용 낙상·욕창 실시간 예측 모델 개발
  • 정윤식 기자
  • 승인 2020.09.15 11:38
  • 댓글 0
이 기사를 공유합니다

44만여건 데이터 머신러닝 기반…의료행위마다 낙상·욕창 발생확률 제시
예측 값에 따라 환자 특별관리 및 보호자 교육 등 예방 시스템 가동 특징
한림대의료원 산하 병원들. 좌측상단부터 시계방향으로 한림대성심병원, 한림대한강성심병원, 한림대동탄성심병원, 한림대춘천성심병원, 한림대강남성심병원
한림대의료원 산하 병원들. 좌측상단부터 시계방향으로 한림대성심병원, 한림대한강성심병원, 한림대동탄성심병원, 한림대춘천성심병원, 한림대강남성심병원

[메디칼업저버 정윤식 기자] 한림대의료원이 입원환자의 낙상과 욕창 발생 가능성을 실시간으로 예측하는 인공지능(AI) 모델을 개발해 주목된다.

낙상과 욕창 등 병원 내 안전사고 예방을 위해 고안된 머신러닝 기반 AI 모델이 나온 것은 이번이 처음이다.

낙상과 욕창은 원내감염과 더불어 병원이 환자안전을 위해 가장 중요하게 여기는 부분이다. 

이러한 안전사고는 질병의 치료 과정에서 환자의 회복과 예후에도 영향을 미치기 때문에 낙상과 욕창을 예방하면 전반적인 입원 생활의 질을 높이면서 비용은 크게 절감할 수 있기 때문이다.

한림대의료원은 이번 AI 모델을 개발하기 위해 최근 5년간 쌓인 낙상 데이터 16만 건, 최근 10년간의 욕창 데이터 28만 건을 분석·가공하고 최적화된 머신러닝 알고리즘에 적용했다.

우선, 낙상 위험 예측 AI 모델에 사용된 데이터는 환자의 기본정보를 비롯해 △낙상위험약품 △항응고제 투여 여부 △골다공증 △걸음걸이 △인지장애 등 20여 가지가 넘는다. 

이어 욕창 위험 예측 AI 모델에는 △감각인지 △습기 △활동 정도 △기동력 △영양상태 △마찰력 △응전력 △헤모글로빈 △식이 △기저질환 등 20여 가지 이상의 데이터를 기반으로 제작됐다. 
 

실시간 위험 예측 덕분에 환자 맞춤형 집중관리 가능

기존에 사용하던 낙상과 욕창 예측 도구는 입원이나 수술 후 등 특정 시점에서나 발생률을 고·중·저 3단계로만 파악할 수 있었다. 

반면 한림대의료원이 개발한 AI 모델의 가장 큰 특징은 '실시간 예측'이 가능하다는 점이다. 

한림대의료원 이강일 의료정보팀장은 "병동 간호사들이 처방전달시스템(OCS)에서 환자 정보를 조회할 때 마다 AI 모델이 실시간으로 낙상과 욕창 발생 가능성을 계산해 의료진에게 제시한다"며 "입원환자에게 처방되는 약, 주사제, 처치, 처방변경 등 의료행위 각각에 실시간으로 변하는 낙상과 욕창 발생률을 즉각적으로 확인할 수 있는데 의미가 있다"고 강조했다.

한림대의료원 산하 전 병원은 이 AI 모델을 도입해 입원환자 대상으로 낙상과 욕창을 예방하는 데 사용하고 있다. 

낙상 예측 AI 모델 화면. 의료진이 환자 정보를 조회할 때 AI 모델이 실시간으로 환자의 낙상 발생 예측률 계산해준다. 일반 병동에서 낙상 예측률 값이 60% 이상일 경우 의료진은 특별 간호 프로그램을 가동한다.
낙상 예측 AI 모델 화면. 의료진이 환자 정보를 조회할 때 AI 모델이 실시간으로 환자의 낙상 발생 예측률 계산해준다. 일반 병동에서 낙상 예측률 값이 60% 이상일 경우 의료진은 특별 간호 프로그램을 가동한다.

일반병동에서는 욕창 예측값이 70% 이상, 중환자실에서는 90% 이상일 경우 환자 모니터링 횟수를 늘리고 보호자 대상 안전교육 프로그램을 제공하는 등 집중관리를 한다. 

낙상의 경우 욕창보다 더 낮은 예측값에서부터 예방적 간호 프로그램을 가동하고 있다. 

한림대강남성심병원 조혜정 간호사는 "낙상·욕창 위험도를 실시간으로 파악할 수 있어서 고위험군 환자를 대상으로 맞춤형 집중관리가 가능하게 됐다"며 "환자와 보호자도 기존에 막연하게 받아들인 안전사고 위험도를 수치로 접하다 보니 더욱 경각심 있게 인지하게 됐다"고 설명했다.

그는 이어 "낙상·욕창 예측 AI 모델을 통해 안전사고 발생 감소를 기대한다"고 덧붙였다.

한편 한림대의료원은 연내 실용화를 목표로 △동정맥류 혈관협착 예측 △정맥염 예측 △동시처방 유효약제 추천 △연하장애로 인한 흡인성폐렴 예측 등 환자안전관리를 위한 다양한 인공지능 모델을 개발 중에 있다. 


관련기사

댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
0 / 400
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.